Engineering of Metabolic Pathways Using Synthetic Enzyme Complexes
نویسندگان
چکیده
منابع مشابه
Engineering of Metabolic Pathways by Artificial Enzyme Channels
Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translat...
متن کاملSynthetic metabolons for metabolic engineering.
It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular locatio...
متن کاملTracing metabolic pathways from enzyme data.
The IUBMB Enzyme List is widely used by other databases as a source for avoiding ambiguity in the recognition of enzymes as catalytic entities. However, it was never designed for activities such as pathway tracing, which have become increasingly important in systems biology. This is because it often relies on generic or representative reactions to show the reactions catalysed by enzymes of wide...
متن کاملMetabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications.
Engineering cell metabolism for bioproduction not only consumes building blocks and energy molecules (e.g., ATP) but also triggers energetic inefficiency inside the cell. The metabolic burdens on microbial workhorses lead to undesirable physiological changes, placing hidden constraints on host productivity. We discuss cell physiological responses to metabolic burdens, as well as strategies to i...
متن کاملePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli.
Harnessing cell factories for producing biofuel and pharmaceutical molecules has stimulated efforts to develop novel synthetic biology tools customized for modular pathway engineering and optimization. Here we report the development of a set of vectors compatible with BioBrick standards and its application in metabolic engineering. The engineered ePathBrick vectors comprise four compatible rest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant Physiology
سال: 2018
ISSN: 0032-0889,1532-2548
DOI: 10.1104/pp.18.01280